skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frauke M. Bleher, Ted Chinburg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the vanishing of Massey products of order at least 3 for absolutely irreducible smooth projective curves over a perfect field with coefficients in Z/ℓ. We mainly focus on elliptic curves, for which we obtain a complete characterization of when triple Massey products do not vanish. 
    more » « less
  2. The Iwasawa theory of CM fields has traditionally concerned Iwasawa modules that are abelian pro-p Galois groups with ramification allowed at a maximal set of primes over p such that the module is torsion. A main conjecture for such an Iwasawa module describes its codimension one support in terms of a p-adic L-function attached to the primes of ramification. In this paper, we study more general and potentially much smaller modules that are quotients of exterior powers of Iwasawa modules with ramification at a set of primes over p by sums of exterior powers of inertia subgroups. We show that the higher codimension support of such quotients can be measured by finite collections of characteristic ideals of classical Iwasawa modules, hence by p-adic L-functions under the relevant CM main conjectures. 
    more » « less
  3. We construct ́etale generalized Heisenberg group covers of hyperelliptic curves over number fields. We use these to produce infinite families of quadratic extensions of cyclotomic fields that admit everywhere unramified generalized Heisenberg Galois extensions. 
    more » « less